

Colloque Solscope - Lyon 23 juin 2021

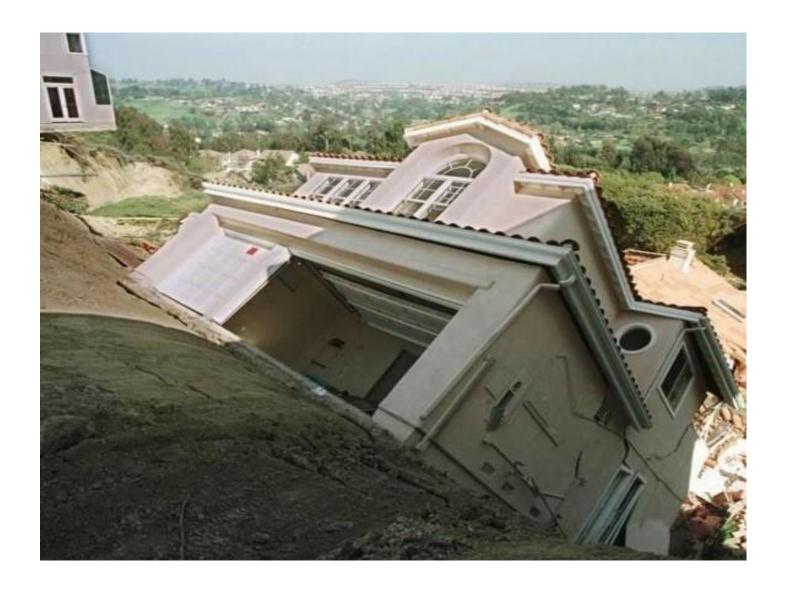
Prise en compte des risques et de la sinistralité

Table ronde sur l'expérience de la NFP 94-500

Introduction à la séance par Jean-Paul Volcke

Table ronde sur l'expérience de la NFP 94-500

Animée par Michel KHATIB



Jean-Pierre SANFRATELLO	COLAS	Limites et contenu des prestations
Sophie LEGRAND	VNF	Maitrise des risques
Thomas SIMONNOT	USG - ACCOTEC	Contenu des investigations
Yves GUERPILLON	Consultant	Interfaces entre acteurs
Bertrand MOUSSELON	CREA	Gestion des avoisinants
Nicole INTES	BOUYGUES BATIMENT IDF	Gestion de l'eau

Table ronde animée par Michel KHATIB - GINGER CEBTP

Table ronde sur l'expérience de la NFP 94-500

Limites et contenu des prestations

Jean-Pierre SANFRATELLO - COLAS

No. or power pereffere Frage.		

Le Management du risque géotechnique est dépendant du contenu de la mission. Risques identifiés mais ...


- ☐ Analyse renvoyée aux missions suivantes
- ☐ Evalué sommairement

Manque d'investigation appropriée, de temps, de budget.

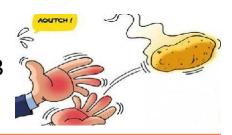
Transférer le risque

Contenu de l'étude pour une plateforme bâtiment

Complet: Fondations sous bâtiment

Insuffisant: Hydrogéologie, risques naturels, terrassement

Inexistant: Consolidation de sols



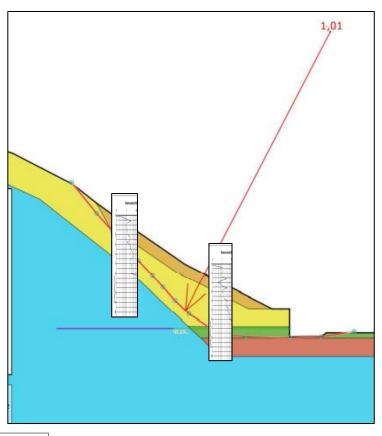
Livrables entre G2-AVP et G2-PRO

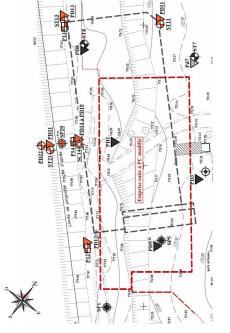
- Souvent variables et imprécis
- Situations provisoires citées mais non traitées et renvoyées à G3

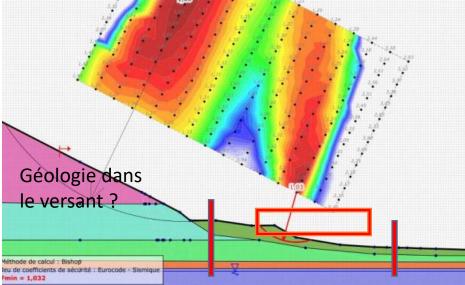
Extrait de la mission G2-AVP

la nécessité en phase chantier, et dès le démarrage de celui-ci, d'aménager la plate-forme de manière à collecter et à évacuer les eaux de pluie et de circulation, afin d'éviter toute imbibition du fond de forme.

Dispositions constructives, délais, impacts définitifs







Investigations incomplètes

- Sondages pas assez profonds (pieux, IR)
- ZIG non couverte hors limite d'emprise

<u>Limite de prestation des intervenants</u>

Répartition des différentes missions entre plusieurs intervenants

Préciser les cas particuliers ...

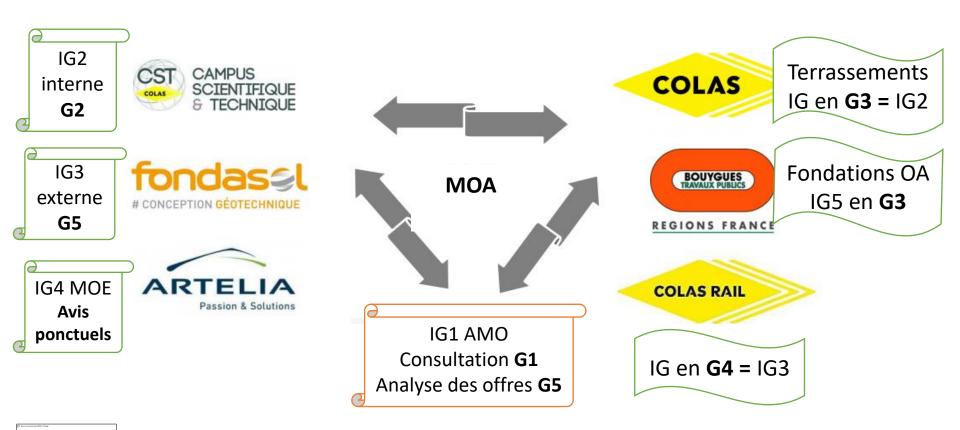


Table ronde sur l'expérience de la NFP 94-500

Limites et contenu des prestations

Rebonds

Table ronde sur l'expérience de la NFP 94-500

Limites et contenu des prestations

Questions??

Table ronde sur l'expérience de la NFP 94-500

Maitrise des risques

Sophie LEGRAND- VNF

Progressivité de la maîtrise des risques durant l'enchaînement des missions d'ingénierie :

G1 ES/PGC

G2 AVP/PRO et DCE/ACT

G3 et G4

Risques MAJEURS

Risques Importants

Risques mineurs

Esquisse/Etude préliminaire

Avant-projet / Projet Etude d'exécution Exécution des travaux

Prise de conscience des enjeux associés aux risques géotechniques :

Exemple à VNF: Guide maîtrise des risques en géotechnique (Socotec Infrastructure 2018/2020)

Evolution des pratiques

Objectifs de réduction des dérapages financiers et temporels des opérations :

- Quantification du risque en terme d'occurrence et d'impact pour le projet mal traitée
- Recherche des solutions palliatives et leur anticipation encore mal gérée
- → non prévues dans les missions normalisées de la NF P94-500

Evolution des pratiques

Recherche de la réduction des aléas et risques en phase d'exécution :

- Mise en œuvre de Plan de Management des Risques pendant toute la durée du projet de sa conception à sa réalisation de plus en plus courantes
- Contractualisation des risques (BPU risques ou provision pour risque)
- → Pas encore assez de G2 DCE/ACT ni de G3 et G4

Table ronde sur l'expérience de la NFP 94-500

Maitrise des Risques

Rebonds

Table ronde sur l'expérience de la NFP 94-500

Maitrise des risques

Questions??

Table ronde sur l'expérience de la NFP 94-500

Contenu des investigations

Thomas SIMONNOT - USG / ACCOTEC

Contenu des investigations

LES INVESTIGATIONS GEOTECHNIQUES sont déterminées par l'ingénieur et dépendent de plusieurs paramètres :

- La mission d'ingénierie géotechnique NF P 94-500
- Le projet et ses ouvrages géotechniques associés
- La ZIG (Zone d'Influence Géotechnique)
- Le contexte géologique
- Le contexte topographique
- Le contexte hydrogéologique l'eau dans le sol
- Les existants et avoisinants

Contenu des investigations

- 1 Quels sont les <u>ouvrages géotechniques à étudier</u> et quels sont les paramètres géotechniques nécessaires pour les étudier ?
- 2 Quels sont les <u>aléas et risques géotechniques à étudier</u> et quels sont les paramètres géotechniques nécessaires pour les étudier ?
- 3 Quel type de sondage / essais in-situ & laboratoire?
- 4 Quelle **quantité de sondages** et d'essais (in-situ / laboratoire) ? Quelle **profondeur** ?
- 5 Quelle **position / localisation**? Plan d'implantation des sondages
- 6 Quel **phasage** ? Méthodologie d'exécution ?

L'ingénieur doit faire des <u>choix pertinents et cohérents</u> pour déterminer le contenu des investigations géotechniques, et les adapter en fonction des résultats obtenus et de l'avancement du projet / de la mission.

Contenu des investigations

Les Recommandations professionnelles sur la consistance des Investigations géotechniques pour les études géotechniques de conception :

Problématique géotechnique	Sondages		Essais en laboratoire		Essais in situ	
Modèle géologique	Sondage carotté Pelle mécanique Tarière Sondages destructifs avec diagraphies	R S S -	Essais d'identification et de classification	R	Pénétromètre statique, piézocône Standard Penetration Test Pénétromètre dynamique	S S I
Terrassement/réemploi Déblai/Remblai Stabilité générale	Echantillon intact ou remanié représentatif, prélevé dans les sondages précédents	R	Essais d'identification, Essais Proctor, de traitements Essai triaxial, Cisaillement rectiligne	222	Scissomètre Phicomètre	SS
Capacité portante	Sondage carotté + Echantillon intact Sondage pour essais pressiométriques	S R	Essai triaxial Compression simple Cisaillement rectiligne	8 8 8	Pressiomètre Pénétromètre statique Standard Pénétration Test Pénétromètre dynamique Scissomètre ou phicomètre	R R S
Tassement (fondations, dallages,)	Sondage carotté + Echantillon intact Sondage pour essais pressiométriques	R	Oedomètre Essai triaxial	RR	Pressiomètre Pénétromètre statique, piézocône Dilatomètre type DMT	R R S
Soutènement	Sondage carotté + Echantillon intact Sondage pour essais pressiométriques	R	Essai triaxial Cisaillement rectiligne	R	Scissomètre ou phicomètre Pressiomètre Piézocône	RSI
Eau souterraine 1-Niveau des nappes	Forage pour piézomètre	R			Piézomètres avec suivi automatique Piézomètres avec suivi manuel Cellules de pression interstitielle	RSS
2- Rabattement	Forage pour essai de pompage et essais d'eau Sondage carotté + Echantillon intact	R			Essai de pompage, piézomètre Essai d'eau (dont micromoulinet) Piézocône	R S S
Aléa sismique	Sondage carotté + Echantillon intact	R	Essai triaxial cyclique Granulomètrie	R	Cross-hole Standard Pénétration Test Pénétromètre statique, piézocône	R R R
Retrait gonflement	Sondage carotté + Echantillon intact	R	Essais de retrait, essai de gonflement Essais d'identification	R		
Reconnaissance de fondations existantes	Fouilles de reconnaissance Sondage carotté Sondage destructif	R S S	Résistance à la compression du béton ou de la maçonnerie	R	Essais Micro-Sismique Parallèle Essai d'impédance Ferroscan, radar	R

R: sondages/essais recommandés

S: sondages/essais satisfaisants

I : sondages/essais indicatifs après calibrage

TABLEAU 1: ANALYSE DE LA PERTINENCE DES TECHNIQUES USUELLES DE RECONNAISSANCE

SOLSCOPE Echangeons, infelisons l'avenir

Table ronde sur l'expérience de la NFP 94-500

CONTENU DES INVESTIGATIONS

Rebonds

Table ronde sur l'expérience de la NFP 94-500

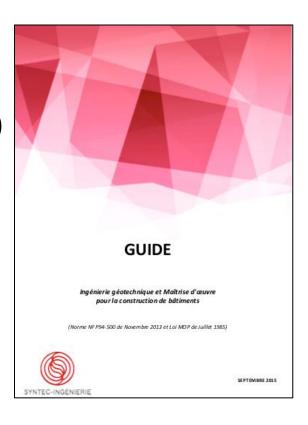
Contenu des investigations

Questions??

Table ronde sur l'expérience de la NFP 94-500

Interfaces entre acteurs

Yves GUERPILLON - Consultant


SOLSCOPE Echangeons, chellsons l'aventr

Gestion des interfaces

Guide SYNTEC Norme et loi MOP

Infrastructures (juin 2014)
Bâtiments (septembre 2015)

- Maître d'ouvrage
- Maître d'œuvre
- Ingénierie géotechnique du MOA/MOE
- Ingénierie géotechnique de l'entreprise
- ✓ Permet de fiabiliser une conception évolutive.
- ✓ Difficultés parfois de définir les limites de prestations entre ingénieur géotechnicien et ingénieur en génie civil dans les ouvrages sols-structures (tunnels- fondations de ponts ...).

Gestion des interfaces

Grands projets:

Les MOA définissent souvent dans les consultations de maîtrise d'œuvre les missions géotechniques en missions complémentaires.

Les investigations géotechniques sont lancées à part suivant le programme proposé par le Géotechnicien.

Petits projets bâtiment :

Géotechnicien à côté de l'Architecte.

Variantes entreprises (économiques) prises en compte sans associer le géotechnicien.

Missions Complémentaires

MC1-OPC ; Ordonnancement, Pilotage et Coordination

MC2-GEO conception; Études géotechniques de conception

MC3-GEO réalisation ; Études géotechniques de suivi de réalisation

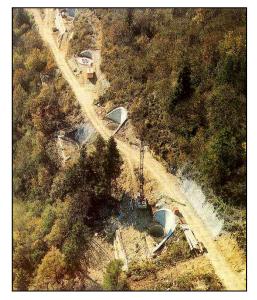
MC 4-ADMR; Assistance à l'élaboration des dossiers administratifs et réglementaires et au suivi des procédures

MC5-RES; Assistance à la coordination des réseaux concessionnaires et réseaux nécessaires à au fonctionnement des équipements d'exploitation

MC6-MAR-EXT ; Assistance au Maître d'ouvrage pour la consultation, la gestion, l'organisation le pilotage et la synthèse des marchés extérieurs

Gestion des interfaces

Projets en site difficile :


Difficultés conduisent d'aller plus loin que la norme en phase travaux.

G3-G4 => PV de réception des fondations établi et signé en commun.

- Pour négocier le décompte général des travaux,
- Intervenir dans le cas de comportement anormal à long terme

SOLSCOPE Échangeons, phelisons l'alenin

Gestion des interfaces

Suivi de comportement :

- Instrumentation de pilotage de travaux.
- Bien définir qui fait quoi :
 - . Plusieurs intervenant G3, rôle G4
 - . Mesures, interprétation, action sur le chantier

Ensuite, modifiée et adaptée pour le suivi à long terme dans le cadre des conseils à l'exploitant : dossier de surveillance.

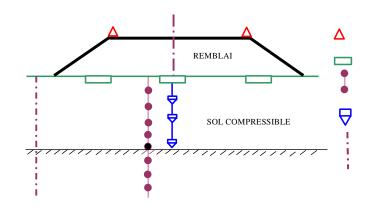


Table ronde sur l'expérience de la NFP 94-500

GESTION DES INTERFACES

REBONDS

Table ronde sur l'expérience de la NFP 94-500

Interfaces entre acteurs

Questions??

Table ronde sur l'expérience de la NFP 94-500

Gestion des avoisinants

Bertrand MOUSSELON - CREA

VOTRE RISQUE PROFESSIONNEL... NOTRE MÉTIER

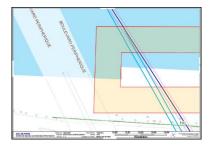
Les Avoisinants

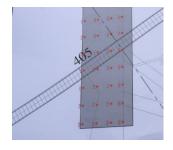
Soutènements

- Contexte géotechnique difficile
- Hypothèses géotechniques optimisées
- Incident de chantier non pris en compte
- Pluies importantes

SINISTRE: 600 000 € + 4 M€

Travaux de voirie

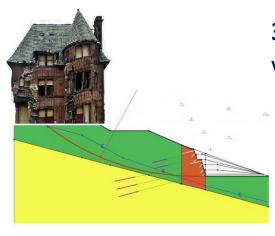

Réseaux



SINISTRE: 8 000 000 €

Contexte:

- Descente de charge modifiée en phase EXE
- Variante type de pieux
- Approfondissement sans reconnaissances supplémentaires
- Pas de recolement des DT/DICT en phase conception (AVP/PRO/EXE)

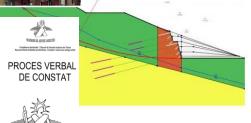


La norme NFP 94-500 : un outils de maîtrise du risque

3.3.21 Zone d'influence géotechnique (ZIG)

volume de terrain au sein duquel il y a interaction entre

- d'une part **l'ouvrage** ou **l'aménagement de terrain** (du fait de sa réalisation et de son exploitation)
- et d'autre part, **l'environnement** (sols, ouvrages, aménagements de terrains ou biens environnants).



La norme NFP 94-500 : un outils de maîtrise du risque

Phase	§	À fournir par le client ou son mandataire
G2 PRO	8.4.4.1	Dans le cas d'avoisinants ou d'existants, le diagnostic structure de ces ouvrages et les critères de déformation admissible pour ces ouvrages.

Constat d'huissier

Référé préventif

Diagnostic structure des avoisinants

Table ronde sur l'expérience de la NFP 94-500

GESTION DES AVOISINANTS

REBONDS

Table ronde sur l'expérience de la NFP 94-500

Gestion des avoisinants

Questions??

Table ronde sur l'expérience de la NFP 94-500

Gestion de l'eau

Nicole INTES - BOUYGUES BATIMENT IDF

Investigations

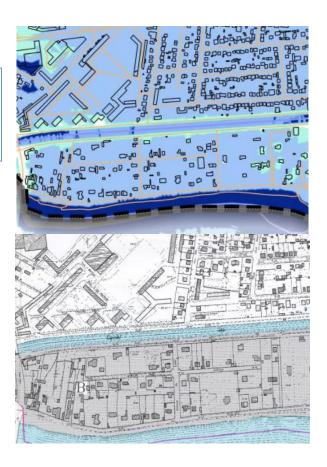
- Identification de l'eau
- Niveaux d'eau

Sondage	SP4	SP5	SP6
Cote du sondage (m NGF)	37.9	38.0	37.9
Cote du niveau d'eau observé (m NGF)	37.1	37.3	36.4
Fin de forage	24/04/2018	16/04/2018	12/04/2018
Date du relevé	24/04/2018	16/04/2018	12/04/2018

- Perméabilité, débits...
- Des sondages ponctuels dans le temps et l'espace ⇔ peu de données, beaucoup d'incertitudes

Interfaces entre acteurs ⇔ souvent plusieurs ingénieries géotechniques

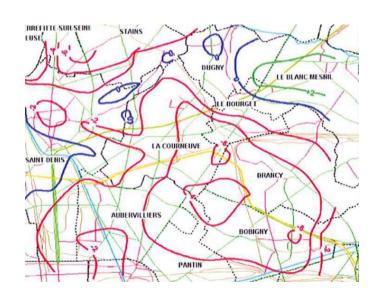
Limites et contenu des prestations

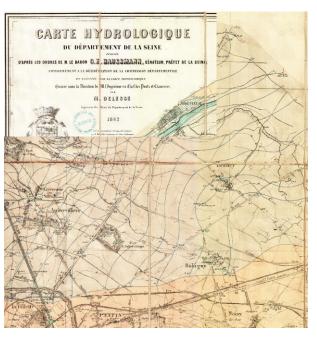


DOSSIER DE DECLARATION AU TITRE DU CODE DE L'ENVIRONNEMENT TITRE 1ER DU LIVRE II

Réglementations

- Loi sur l'eau
- PPRI
- Cartes des aléas
- Plans des surfaces submersibles
- PLU
- Code de la construction
- ...


Interfaces entre acteurs ⇔ souvent une autre ingénierie géotechnique Limites et contenu des prestations ⇔ besoin de synthèse



Données historiques Données bibliographiques

Interfaces entre acteurs ⇔ souvent une autre ingénierie géotechnique

Limites et contenu des prestations ⇔ besoin de synthèse

Gestion de l'eau en phase provisoire

- Niveaux d'eau / probabilités
- Gestion du risque / personnes et matériels
- Du terrassement à la construction : une cinématique et une temporalité des phases provisoires

Interfaces entre acteurs ⇔ souvent plusieurs entreprises, en plus des ingénieries géotechniques

Maîtrise des risques

CALCUL DU DEBIT DE FOND DE FOUILLE

Gestion de l'eau en phase définitive

Niveaux d'eau / probabilités

ESTIMATION DES NIVEAUX DE PLUS HAUTES EAUX

Influence des pompages voisins

- Gestion du risque / personnes et biens
- Inondabilité
- Protection contre l'inondation MOA
- Résilience

Interfaces entre acteurs de nouveaux acteurs, comme les corps d'états impactés par l'eau en phase définitive, les utilisateurs.

Maîtrise des risques

Besoin de synthèse entre les acteurs MOA

- Ingénieries géotechniques
- MOE
- BE AMO, autres ingénieries
- Entreprises

Besoin de synthèse à toutes les phases

- G1 > G2 AVP > G2 PRO > G2 DCE/ACT > G3/G4
- Prise en compte des évolutions du projet de l'esquisse à la réalisation

Interfaces entre acteurs Limites et contenu des prestations

Maîtrise des risques

Table ronde sur l'expérience de la NFP 94-500

GESTION DE L'EAU

REBONDS

Table ronde sur l'expérience de la NFP 94-500

Gestion de l'eau

Questions??

Table ronde sur l'expérience de la NFP 94-500

Thèmes et calendrier Travaux NFP 94-500

Michel KHATIB - GINGER CEBTP

Organisation des travaux sur la NFP 94-500

- Le groupe complet compte près de 75 experts.
- Plusieurs thèmes de la norme ont été identifiés pour faire l'objet de travaux de réflexion à partir des commentaires de l'enquête
- Chaque thème est porté par un sous-groupe de travail, l'ensemble des sous-groupes de travail mobilisant 37 experts. Leur mission est de rédiger les textes implémentant ou complétant la norme actuelle.

CONCEPTION REALISATION	METHODE OBSERVATIONNELLE	VARIANTES / E ADAPTATIONS	PLURALITE ENTREPRISES	DIAGNOSTIC GEOTECHNIQUE	Contraction des missions	CAS DE L'AMENAGEUR	ALEAS GRAVITAIRES
JP SANFRATELLO	Y GUERPILLON	B MOUSSELON	JP VOLCKE	JP VOLCKE	S LEGRAND	J ROBERT	Benoit NAGEL
	JP VOLCKE	O. BARNOUD		J ROBERT	P CHASSAGNE		Anne LESCURIER
Schémas d'organisatio	Suivi du comportement n des ouvrages géotechniques	PMR	Ouvrages provisoires	DCE/ACT et G2- G4	Définitions	Commentaires sur l'ES	
AM VIGNEY	V BERCHE	P MURIGNEUX	O. BARNOUD	JC. BEAUCOUR	JP VOLCKE	J. ROBERT	
C CHOMETTE	C JACQUARD	S LEGRAND	JP VOLCKE	N. INTES	B. MOUSSELON	S. LEGRAND	

Table ronde sur l'expérience de la NFP 94-500

Questions??